

Handbook of Modules

Master Advanced Functional Materials (FAME)

Faculty of Mathematics, Natural Sciences, and Materials Engineering

valid from Winter Semester 2015/2016

Prüfungsordnung vom 26.02.2014

Index by Groups of Modules

1) 1a Basics of Materials Science I

PHM-0144: Materials Physics (6 ECTS/LP, Pflicht)	. 5
PHM-0110: Materials Chemistry (6 ECTS/LP, Pflicht)	. 7

2) 1b Basics of Materials Science II

PHM-0117: Surfaces and Interfaces (6 ECTS/LP, Wahlpflicht)	. 9
PHM-0053: Chemical Physics I (6 ECTS/LP, Wahlpflicht)	11

3) 2 Methods in Materials Science

PHM-0171: Method Course: Coordination Materials (8 ECTS/LP, Wahlpflicht)13
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht)15
PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht)
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht) 19
PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht)21
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht)
PHM-0150: Method Course: Spectroscopy on Condensed Matter (8 ECTS/LP, Wahlpflicht)25
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)
PHM-0157: Method Course: X-ray and Neutron Diffraction Techniques (8 ECTS/LP, Wahlpflicht)28
PHM-0173: Method Course: Finite element modeling of multiphysics phenomena (8 ECTS/LP, Wahlpflicht)
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht)32
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht) 34

4) 3 Conducting and Presenting Scientific Work

PHM-0158: Introduction to Materials (= Seminar) (4 ECTS/LP, Pflicht)	36
PHM-0159: Laboratory Project (10 ECTS/LP, Pflicht)	

5) 4 Materials Science - Elective Topic

a) Physics of Materials

PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht)
--

PHM-0160: Dielectric and Optical Materials (6 ECTS/LP, Wahlpflicht)	40
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht)	41
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht)	43
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)	45
PHM-0174: Theoretical Concepts and Simulation (6 ECTS/LP, Wahlpflicht)	47
PHM-0052: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (6 ECTS/LP, Wahlpflicht)	49
PHM-0056: Ion-Solid Interaction (6 ECTS/LP, Wahlpflicht)	51
PHM-0057: Physics of Thin Films (6 ECTS/LP, Wahlpflicht)	53
PHM-0058: Organic Semiconductors (6 ECTS/LP, Wahlpflicht)	55
PHM-0060: Low Temperature Physics (6 ECTS/LP, Wahlpflicht)	57
PHM-0068: Spintronics (6 ECTS/LP, Wahlpflicht)	59
PHM-0066: Superconductivity (6 ECTS/LP, Wahlpflicht)	61
PHM-0069: Applied Magnetic Materials and Methods (6 ECTS/LP, Wahlpflicht)	63
PHM-0198: Special Topics in Materials Science (Foreign Institution) (20 ECTS/LP)	65

b) Chemistry of Materials

PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht)	.66
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht)	.68
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)	.70
PHM-0162: Solid State NMR Spectroscopy and Diffraction Methods (6 ECTS/LP, Wahlpflicht)	.71
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht)	.73
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)	.75
PHM-0198: Special Topics in Materials Science (Foreign Institution) (20 ECTS/LP)	.77

c) Engineering of Materials

PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht)	78
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht).	80
PHM-0165: Introduction to Mechanical Engineering (6 ECTS/LP, Wahlpflicht)	82
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht)	83
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht)	84
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)	86

PHM-0184: Sustainable Resource Management (6 ECTS/LP, Wahlpflicht)	88
PHM-0050: Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht)	90
PHM-0166: Carbon-based functional Materials (Carboterials) (6 ECTS/LP, Wahlpflicht)	92
PHM-0198: Special Topics in Materials Science (Foreign Institution) (20 ECTS/LP)	94

6) 6 Finals

PHM-0169: Masterthesis (26 ECTS/LP, Pflicht)	. 95
PHM-0170: Colloquium (4 ECTS/LP, Pflicht)	. 96

Module PHM-0144: Materials Phy	vsics	ECTS Credits: 6
Version 1.1.0 (since WS15/16)		
Person responsible for module: apl. Prof. Dr. Helmut Karl		
Contents: Electrons in solids Phonons Properties of metals, semiconduc Application in optical, electronic, Dielectric solids, optical properties 	ctors and insulators and optoelectronic devices	
 Learning Outcomes / Competences: The students know the basic terr structure, charge carrier statistics are capable to apply derived app basic characteristics of semiconor have the competence to apply th of solids and to describe their fur understand size effects on mater Integrated acquirement of soft sk thinking. 	ns and concepts of solid state physics lil s, phonons, doping and optical properties roximations as the effective mass or the ductor materials, ese concepts for the description of elect inctionalities, rial physical properties. cills: Working with specialist literature, lite	ke the free electron gas, electronic band s, electron-hole concept to describe ric, electro-optic and thermal properties erature search and interdisciplinary
Remarks:		
compulsory module		
Workload: Total: 180 h 120 h studying of course content using 60 h lecture and exercise course (atter Conditions:	provided materials (self-study) adance)	
basic knowledge of solid state physics		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
1. Part of the Module: Materials Phys Mode of Instruction: lecture	sics	

Language: English Contact Hours: 3

Learning Outcome:

see module description

Contents:

- · Electrons in solids: Free electron gas, band structure, effective mass
- · Lattice dynamics: Phonons, phonon dispersion, acoustic and optical phonons
- · Properties of metals: Electrical conductivity, Fermi surfaces, thermal properties
- · Properties of semiconductors: Pure, intrinsic semiconductors, equilibrium conditions, doping
- Properties of dielectric materials: Propagation of electromagnetic waves, frequency dependent optical properties, polarization effects.
- Application in devices: Heterostructures, Schottky contact, pn-junction, solar cell, light emission and technological aspects

Literature:

- Hummel R. E. : Electronic Properties of Materials Springer 2001 (UP1000 H925)
- Burns G.: Solid State Physics Academic Press 1990 (UP1000 B967)
- Ashcroft N. W., Mermin N.D.: Solid State Physics (UP1000 A 824)
- Kittel C. : Introduction to Solid State Physics (UP1000 K 62)

Assigned Courses:

Materials Physics (lecture)

2. Part of the Module: Materials Physics (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Assigned Courses:

Materials Physics (Tutorial) (exercise course)

Examination

Materials Physics

written exam / length of examination: 90 minutes

Module PHM-0110: Materials C	hemistry	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof	. Dr. Henning Höppe	
Contents: Revision of basic chemical con Solid state chemical aspects of Thermoelectrics Battery electrode materi Hydrogen storage materials Data storage materials Phosphors and pigment Ferroelectrics and Piezo Heterogeneous catalysis nanoscale materials Learning Outcomes / Competence The students will be able to apply basic chemica broaden their ability to derive s about symmetry-related proper classes	ncepts f selected materials, such as als, ionic conductors ials s electrics s electrics s s electrics s s electrics s c s c s c s c c c c c c c c c c c	ns, combining their extended knowledge emical properties of selected compound
classes,be able to assess synthetic apacquire skills to perform literat	proaches towards relevant materials, ure research using online data bases.	
Workload: Total: 180 h 20 h studying of course content usin 20 h studying of course content usin 80 h studying of course content thro 60 h lecture and exercise course (at	g literarture (self-study) g provided materials (self-study) ugh exercises / case studies (self-study) tendance)	
Conditions: The lecture course is based on the E Chemie I and Chemie III (solid state	Bachelor in Materials Science courses chemistry).	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
1. Part of the Module: Materials Cl Mode of Instruction: lecture Language: English Contact Hours: 3	nemistry	

see description of module

Contents:

see description of module

Literature:

- A. R. West, Solid State Chemistry, John Wiley, Chichester.
- U. Müller, Inorganic Structural Chemistry, Wiley-VCH.
- R. Dronskowski, Computational Chemistry of Solid State Materials, Wiley VCH.
- Textbooks on Basics of Inorganic Chemistry such as J. E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie, de Gruyter, or equivalents.
- Moreover, selected reviews and journal articles will be cited on the slides.

Assigned Courses:

Materials Chemistry (lecture)

2. Part of the Module: Materials Chemistry (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see description of module

Contents:

see description of module

Literature:

see associated lecture

Assigned Courses:

Materials Chemistry (Tutorial) (exercise course)

Examination

Materials Chemistry

written exam / length of examination: 90 minutes

Module PHM-0117: Surfaces and	Interfaces	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. Dr. Siegfried Horn		
Contents: Introduction		
The importance of surfaces and i	nterfaces	
Some basic facts from solid state physi	cs	
 Crystal lattice and reciprocal lattic Electronic structure of solids Lattice dynamics 	ce	
Physics at surfaces and interfaces		
 Structure of ideal and real surfaces Relaxation and reconstruction Transport (diffusion, electronic) on interfaces Thermodynamics of interfaces Electronic structure of surfaces Chemical reactions on solid state surfaces (catalysis) Interface dominated materials (nano scale materials) 		
Methods to study chemical composition	and electronic structure, application exa	amples
 Scanning electron microscopy Scanning tunneling and scanning force microscopy Auger – electron – spectroscopy Photo electron spectroscopy 		
Learning Outcomes / Competences:		
The students:		
 have knowledge of the structure, the electronical properties, the thermodynamics, and the chemical reactions on surfaces and interfaces, acquire the skill to solve problems of fundamental research and applied sciences in the field of surface and interface physics, have the competence to solve certain problems autonomously based on the thought physical basics. Integrated acquirement of soft skills. 		
Workload:		
Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study)		
Conditions:		
The module "Physics IV - Solid State Physics" of the Bachelor of Physics / Materials Science program should be completed first.		
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module
1. Part of the Module: Surfaces and Interfaces
Mode of Instruction: lecture
Language: English
Frequency: annually
Contact Hours: 3
Learning Outcome:
see module description
Contents:
see module description
Literature:
 Ertl, Küppers: Low Energy Electrons and Surface Chemistry (VCH)
 Lüth: Surfaces and Interfaces of Solids (Springer)
 Zangwill: Physics at Surfaces (Cambridge)
 Feldmann, Mayer: Fundamentals of Surface and thin Film Analysis (North Holland)
 Henzler, Göpel: Oberflächenphysik des Festkörpers (Teubner)
 Briggs, Seah: Practical Surface Analysis I und II (Wiley)
Assigned Courses:
Surfaces and Interfaces (lecture)
2. Part of the Module: Surfaces and Interfaces (Tutorial)
Mode of Instruction: exercise course
Language: English
Frequency: annually
Contact Hours: 1
Assigned Courses:
Surfaces and Interfaces (lecture)

Examination

Surfaces and Interfaces

written exam / length of examination: 90 minutes

Modulo PHM-0053: Chomical Ph		ECTS Credits: 6
Version 1.0.0 (since WS09/10) Person responsible for module: Prof. Dr. Wolfgang Scherer		
Basics of quantum chemical me	athods	
Molecular symmetry and group	theory	
The electronical structure of trai	nsition metal complexes	
Learning Outcomes / Competences	· · · · · · · · · · · · · · · · · · ·	
The students:	-	
 know the basics of the extended 	d-Hückel-method and the density functior	nal theory,
 know the basics of group theory 	/.	
 are able to apply the knowledge spectroscopy, and 	e gained through consideration of symme	try from vibration-, NMR-, and UV/VIS-
are able to interpret and predict	the basical geometric, electronical and n	nagnetical properties of transition metal
complexes.	killer chility to apopiolize in a colontific to	ais and to apply the pequired knowledge
 Integrated acquirement of solt s for solving scientific problems 	skins, ability to specialize in a scientific top	bic and to apply the acquired knowledge
Pemerke:		
It is possible for students to do FHM	calculations autonomously and analyze e	lectronical structures of molecules on a
computer cluster within the scope of t	he tutorial.	lectronical structures of molecules on a
Workload:		
Total: 180 h		
20 h studying of course content using	provided materials (self-study)	
20 h studying of course content using	literarture (self-study)	
80 h studying of course content through	gh exercises / case studies (self-study)	
60 h lecture and exercise course (atte	endance)	
Conditions:		
It is recommended to complete the ex	periments FP11 (IR-spectroscopy)	
and FP17 (Raman-spectroscopy) of the	ne module "Physikalisches	
Fortgeschrittenenpraktikum".		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
1. Part of the Module: Chemical Physics I		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		

see module description

Contents:

- · Basics of quantum chemical methods
 - Extended Hueckel method (EHM)
 - · Modern quantum chemical methods of chemical physics
 - Application: exemplary calculations and interpretation of simple electronical structures
- Molecular symmetry and group theory
 - Symmetry operations and matrix transformations
 - Point groups
 - Reducible and irreducible representations
 - Character tables
 - Application: infrared- and raman-spectroscopy, NMR-spectroscopy
- · The electronical structure of transition metal complexes
 - Ligand field theory and angular-overlap model (AOM)
 - The physical basics of the spectrochemical series
 - Molecular orbital theory of transition metal complexes
 - Application: UV/VIS-spectroscopy, molecular magnetism

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- D. C. Harris und M. D. Bertolucci, Symmetry and Spectroscopy (Dover Publications)
- D. M. Bishop, Group Theory and Chemistry (Dover Publications)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

Assigned Courses:

Chemical Physics I (lecture)

2. Part of the Module: Chemical Physics I (Tutorial)

Mode of Instruction: exercise course

Language: English Contact Hours: 1

.

Assigned Courses:

Chemical Physics I (Tutorial) (exercise course)

Examination

Chemical Physics I

written exam / length of examination: 90 minutes

Module PHM-0171: Method Cours	se: Coordination Materials	ECTS Credits: 8	
Version 1.0.0 (since SoSe15)			
Person responsible for module: Prof. Dr. Dirk Volkmer			
Contents:			
 Synthesis of metal complexes: Analytical characterization of metal diffraction) Eurotional coordination materials 	tal complexes (thermal analysis, UV/vis s	spectroscopy, cyclic voltammetry, X-ray	
4. Catalysis (oxidation reactions)		iorage materials)	
Learning Outcomes / Competences: The students will learn how to:			
 prepare transition metal complex synthesis conditions (Schlenk teo 	es employing modern preparation techni chnique),	ques (e.g. microwave synthesis), inert	
 characterize coordination compo develop functional coordination n 	unds by selected analytical techniques, naterials based on organic / inorganic hy	brid compounds.	
 screen metal complexes in cataly 	/tic reactions,		
 employ X-ray diffraction methods 	for structural analysis.		
Remarks: ELECTIVE COMPULSORY MODULE			
Workload: Total: 240 h 120 h lecture and exercise course (attendance) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study)			
Conditions: none	Conditions: Credit Requirements: written report (protocols)		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
1. Part of the Module: Method Course: Coordination Materials (Practical Course) Mode of Instruction: internship Language: English Contact Hours: 4			
2. Part of the Module: Method Course: Coordination Materials (Seminar) Mode of Instruction: seminar Language: English Contact Hours: 2			
Literature: Chemical databases Primary literature 			

Examination Method Course: Coordination Materials (Seminar) seminar

Module PHM-0147: Method Co	urse: Electron Microscopy	ECTS Credits: 8
Version 1.0.0 (since SoSe15)		
Person responsible for module: Pro	. Dr. Ferdinand Haider	
Contents:		
1. Scanning electron microscopy	r (SEM)	
2. Transmission electron micros	copy (TEM)	
Learning Outcomes / Competence The students:	95:	
 get introduced to the basics o lectures to teach the theoretic are able to characterize materiate is feasible for a certain proble 	scanning electron microscopy and tran al basics, which are afterwards deepend ials using different electron microscopy m.	smission electron microscopy, using ed using practical courses, techniques and to decide, if the technique
Remarks: ELECTIVE COMPULSORY MODU	LE	
Workload: Total: 240 h 150 h studying of course content us 90 h lecture and exercise course (at	ing provided materials (self-study) tendance)	
Conditions:		Credit Requirements:
Recommended: knowledge of solid-	state physics, reciprocal lattice	written report (one report per group)
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	
Parts of the Module		

1. Part of the Module: Method Course: Electron Microscopy

Mode of Instruction: lecture Language: English

Contact Hours: 2

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

2. Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: internship

Language: English

Contact Hours: 4

Examination

Method Course: Electron Microscopy

Module PHM-0146: Method Con and Materials Scientists	urse: Electronics for Physicists	ECTS Credits: 8	
Version 1.0.0 (since SoSe15)			
Person responsible for module: Andr	eas Hörner		
Contents:			
1. Basics in electronic and electri	1. Basics in electronic and electrical engineering [4]		
2. Quadrupole theory [2]			
3. Analog technique, transistor ar	nd opamp circuits [5]		
4. Boolean algebra and logic [4]			
5. Digital electronics and calculat	ion circuits [6]		
6. Microprocessors and Networks	s [4]		
7. Basics in Electronic [8]			
8. Implementation of transistors [8]		
9. Operational amplifiers [8]			
10. Digital electronics [8]			
11. Practical circuit arrangement [8			
Learning Outcomes / Competence	s:		
laboratory, have skills in easy circuit desig have expertise in independent Remarks: ELECTIVE COMPULSORY MODUL	n, measuring and control technology, an working on circuit problems. They can ca	alog and digital electronics, alculate and develop easy circuits.	
Attendance in the Method Course: I AND lecture) excludes credit points	Electronics for Physicists and Material for the lecture Electronics for Physicist	Is Scientists (combined lab course is and Materials Scientists.	
Workload: Total: 240 h 140 h studying of course content usin 100 h lecture and exercise course (a	ng provided materials (self-study) ttendance)		
Conditions: Credit Requirements: none written report (one per group)		Credit Requirements: written report (one per group)	
Frequency:	Recommended Semester:	Minimal Duration of the Module:	
each semester	from 1.	1 semester[s]	
Contact Hours:	Repeat Exams Permitted:		
7	according to the examination regulations of the study program		
Parts of the Module			
1. Part of the Module: Method Cou	rse: Electronics for Physicists and Ma	terials Scientists	

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

2. Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course)

Mode of Instruction: internship Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship)

Examination

Method Course: Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Module PHM-0172: Method Cour Materials	se: Functional Silicate-analogous	ECTS Credits: 8	
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Henning Höppe			
Contents: Synthesis and characterization of funct	ional materials according to the topics:		
 Silicate-analogous compounds Luminescent materials / phospho Pigments Characterization methods: XRD, 	 Silicate-analogous compounds Luminescent materials / phosphors Pigments Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis 		
Learning Outcomes / Competences: The students will know how to:			
 develop functional materials based on silicate-analogous materials, apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules), work under non-ambient atmospheres (e.g. reducing, inert conditions), solve and refine crystal structures from single-crystal data, describe and classify these structures properly. 			
Remarks: ELECTIVE COPULSORY MODULE			
Workload: Total: 240 h 120 h lecture and exercise course (atte 20 h studying of course content using p 20 h studying of course content using I 80 h studying of course content through	ndance) provided materials (self-study) iterarture (self-study) n exercises / case studies (self-study)		
Conditions: Recommended: attendance to the lecture "Advanced Solid State Materials"		Credit Requirements: written report (protocol)	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module	A		

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: internship

Language: English

Contact Hours: 6

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Assigned Courses:

Method Course: Functional Silicate-analogous Materials (Practical Course) (internship)

Examination

Method Course: Functional Silicate-analogous Materials

seminar

Module PHM-0148: Method Cours	se: Optical Properties of Solids	ECTS Credits: 8	
Version 1.0.0 (since SoSe15)			
Person responsible for module: Prof. Dr. Joachim Deisenhofer			
Contents:			
Electrodynamics of solids			
Maxwell equations			
Electromagnetic waves Defrection and interference. Free			
Refraction and interference, Fres	nel equations		
F IIR spectroscopy			
Fourier transformation	orforomotor		
 Sources and detectors 	enerometer		
Terahertz Time Domain spectroscopy			
Generation of pulsed THz radiation	on		
Gated detection, Austin switches			
Elementary excitations in solids			
Infrared-active phonons			
Magnetic-dipole excitations			
Crystal-field excitations			
Learning Outcomes / Competences:			
 get to know the basic principles of learn about fundamental physical 	get to know the basic principles of far-infrared spectroscop and terahertz time-domain-spectroscopy,		
 learn to plan and carry out compl 	ex experiments,		
learn how to evaluate and analyze optical data.			
Remarks:			
Workload:			
Total: 240 h			
90 h lecture and exercise course (atten			
30 h studying of course content using p	provided materials (self-study)		
90 h studying of course content using inerarture (sen-study)			
Conditions: Credit Requirements:			
Recommended: basic knowledge in solid-state physics, basic knowledge in written report		written report	
electrodynamics and optics			
Frequency:	Recommended Semester:	Minimal Duration of the Module:	
irregular (usu. summer semester)	from 1.	1 semester[s]	
Contact Hours:	Repeat Exams Permitted:		
6	according to the examination		

Parts of the Module

1. Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- J.D. Jackson, Classical Electrodynamics (de Gruyter)
- N.W. Ashcroft, N.D. Mermin, Solid state physics (Saunders)
- Ch. Kittel, Introduction to solid state physics (Wiley)
- E. Hecht, Optics (Addison-Wesley Longman

Assigned Courses:

Method Course: Optical Properties of Solids (lecture)

2. Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: internship

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Optical Properties of Solids (Practical Course) (internship)

Examination

Method Course: Optical Properties of Solids

Module PHM-0149: Method Cours	se: Methods in Biophysics	ECTS Credits: 8
Version 1.0.0 (since SoSe15)		
Person responsible for module: Dr. Stefan Thalhammer		
Contents:		
Unit radiation biophysics		
Concepts in radiation protection		
Low-dose irradiation biophysics		
DNA repair dynamics of living ce Confectl economics leaver microse	lls after ionizing radiation	
	ору	
Microfluidic systems		
Calculation of microfluidic proble	ms	
Unit analysis		
Learning Outcomes / Competences:		
The students:		
 know basic terms, concepts and 	phenomena in radiation biophysics,	
acquire basic knowledge of fluidi	c and biophysical phenomena on smal	I length scales and applications and
technologies of microfluidic analy	rtical systems,	
 learn skills in tissue culture and in 	mmun-histochemical staining procedu	es,
learn skills in fluorescence and c	onfocal scanning microscopy,	
 learn skills to calculate fluidic pro learn skills to bandle microfluidic 	channel systems	
Pomarke:		
ELECTIVE COMPULSORY MODULE		
The course will partly take place at the	Helmholtz Center Munich.	
Workload:		
Total: 240 h		
Conditions:		Credit Requirements:
Attendance of the lecture "Biophysics and Biomaterials" 1 written lab report		1 written lab report
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	
Parts of the Module		
1. Part of the Module: Method Course: Methods in Biophysics		
Mode of Instruction: lecture		
Language: English		
CONTACT HOURS: 2		

2. Part of the Module: Method Course: Methods in Biophysics (Practical Course)

Mode of Instruction: internship

Language: English

Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Examination Method Course: Methods in Biophysics

Module PHM-0150: Method Cours Matter	se: Spectroscopy on Condensed	ECTS Credits: 8
Version 1.0.0 (since SoSe15)		
Person responsible for module: Dr. Stephan Krohns		
Contents: Dielectric Spectroscopy [8]		
 Methods Cryo-techniques Measurement quantities Relaxation processes Dielectric phenomena 		
Ferroelectric Materials [7]		
 Mechanism of ferroelectric polari. Hysteresis loop measurements Dielectric spectroscopy 	zation	
Glassy Matter [8]		
IntroductionGlassy phenomenaDielectric spectroscopy		
Multiferroic Materials [7]		
 Introduction Microscopic origins of multiferroicity Pyrocurrent measurements Dielectric spectroscopy 		
Learning Outcomes / Competences: The students:		
 learn about the basic concepts of dielectric spectroscopy and the phenomena examined with it. Therefore they are instructed in experimental methods for the investigation of the dielectric properties of condensed matter, are trained in planning and performing complex experiments. They learn to evaluate and analyze the collected data, are taught to work on problems in experimental solid state physics, including analysis of measurement results and their interpretation in the framework of models and theories. 		
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h		
Conditions:Credit Requirements:Recommended: basic knowledge in solid state physics, basic knowledge in physics of glasses and supercooled liquidswritten report on the experi- (editing time 2 weeks)		Credit Requirements: written report on the experiments (editing time 2 weeks)
Frequency: irregular (usu. winter semester)	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

1. Part of the Module: Method Course: Spectroscopy on Condensed Matter

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg)
- Ch. Kittel, Einführung in die Festkörperphysik (Oldenbourg)
- C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization (Elsevier)
- J. R. Macdonald, Impedance Spectroscopy (Wiley)
- H. Scholze, Glas (Springer)
- S.R. Elliott, Physics of Amorphous Materials (Longman)
- R. Zallen, The Physics of Amorphous Solids (Wiley)

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (lecture)

2. Part of the Module: Method Course: Spectroscopy on Condensed Matter (Practical Course)

Mode of Instruction: internship

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (Practical Course) (internship)

Examination

Method Course: Spectroscopy on Condensed Matter

written exam / length of examination: 120 minutes

Module PHM-0151: Method Cours and Characterization	se: Porous Materials - Synthesis	ECTS Credits: 8	
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Dirk Volkmer			
Contents: Synthesis of porous functional materials	s (e.g. Metal-Organic Frameworks, zeoli	tes)	
Characterization methods			
 Thermal analysis (TGA, EGA) Structure determination (XRD, VTXRPD) Absorption and diffusion (BET, pulse chemisorption) Catalytic properties (UV/VIS, TPO, TPR) Computational Modeling (calculation and predictions of framework structures) 			
Learning Outcomes / Competences: The students will learn how to			
use modern solid state preparationemploy analytical methods dedicated	on techniques (e.g. microwave synthesis ated to porous materials.	i),	
Remarks: ELECTIVE COMPULSORY MODULE	Remarks: ELECTIVE COMPULSORY MODULE		
further information upon request			
Workload: Total: 240 h 120 h lecture and exercise course (attendance) 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study)			
Conditions: Credit Requirements: Recommended: lecture Functional Porous Materials written report (editing time 1 week)		Credit Requirements: written report (editing time 1 week)	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		

Parts of the Module

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course) Mode of Instruction: internship

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Porous Materials Synthesis and Characterization (Practical Course) (internship)

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Module PHM-0157: Method Cours Techniques	se: X-ray and Neutron Diffraction	ECTS Credits: 8	
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Wolfgang Scherer			
Contents: Subjects of the practical training and th of X-ray and neutron diffraction techniq	Contents: Subjects of the practical training and the accompanying lecture are the theoretical basics and the practical application of X-ray and neutron diffraction techniques:		
Basic introduction to X-ray and neutron	crystallography		
X-ray/neutron scattering			
Data collection and reduction technique	es		
Symmetry and space group determinat	ion		
Structural refinements:			
The Rietveld methodDifference Fourier synthesis			
Structure determination:			
Patterson methodDirect methods			
Interpretation of structural refinement re	esults		
Electronic structure determination and	analysis		
 Learning Outcomes / Competences: The students: gain basic practical knowledge on structural characterization methods for single-crystalline and powder samples employing X-ray and neutron diffraction techniques, have the skill to, under guidance, perform phase-analyses and structure determinations, are competent to analyze the structure-property relationships of new materials. 			
Remarks: ELECTIVE COMPULSORY MODULE			
Workload: Total: 240 h 30 h studying of course content using provided materials (self-study) 30 h studying of course content using literarture (self-study) 90 h studying of course content through exercises / case studies (self-study) 90 h lecture and exercise course (attendance)			
Conditions:			
none	1		
Frequency:	Recommended Semester:	Minimal Duration of the Module:	
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	1 301163161[3]	
Parts of the Module			

1. Part of the Module: Method Course: X-ray and Neutron Diffraction Techniques

Mode of Instruction: lecture Language: English

Contact Hours: 2

Literature:

- C. Hammond, The Basis of Crystallography and Diffraction, Oxford University Press Inc., New York, 2001.
- W. Clegg, A. J. Blake, R. O. Gould, P. Main, Crystal Structure Analysis, Prin-ciple and Practice, Oxford University Press Inc., New York, 2001.
- G. Giacovazzo, Fundamentals of Crystallography, Oxford University Press Inc., New York, 1994.
- R. A. Young, The Rietveld Method, Oxford University Press Inc., New York, 2002.
- W. Massa, Crystal Structure Determination, Springer, Berlin, 2004.

Assigned Courses:

Method Course: X-ray and Neutron Diffraction Techniques (lecture)

2. Part of the Module: Method Course: X-ray and Neutron Diffraction Techniques (Practical Course)

Mode of Instruction: internship

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: X-ray and Neutron Diffraction Techniques (Practical Course) (internship)

Examination

Method Course: X-ray and Neutron Diffraction Techniques

written exam / length of examination: 90 minutes

multiphysics phenomena	ourse: Finite element modeling of	ECTS Credits:
Version 1.0.0 (since SoSe15)		
Person responsible for module: Ma	rkus Sause	
 Contents: Modeling and simulation of p Basic concepts of FEM progr Generation of meshes Optimization strategies Selection of solvers Examples from electrodynam Examples from thermodynam Examples from continuum meshes Examples from fluid dynamic 	hysical processes and phenomena ams nics nics echanics s	
earning Outcomes / Competence Students know established n Students acquire abilities to b Students learn basic operation Remarks: ELECTIVE COMPULSORY MODU This module is provided by external edicated to materials scientists, pl	 ces: umerical procedures to model and simulate puild numerical models based on real world onal principles of FEM tools based on the puild JLE I lecturers and lecturers from the mathematic hysicists and engineers who intend to stren 	e physical processes and systems challenges rogram "COMSOL Multiphysics" tics and physics department. It is gthen their background in numerical
Workload: Total: 240 h 120 h lecture and exercise course (30 h studying of course content thr 20 h studying of course content usi 20 h studying of course content usi	(attendance) ough exercises / case studies (self-study) ng literarture (self-study) ng provided materials (self-study)	
Conditions: Recommended: basic knowledge of numerical cocepts		Credit Requirements: 1 written report on selected topic, editing time 2 weeks
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 1.	1 semester[s]

1. Part of the Module: Method Course: Finite element modeling of multiphysics phenomena

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Finite element modeling of multiphysics phenomena (lecture)

2. Part of the Module: Method Course: Finite element modeling of multiphysics phenomena (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Finite element modeling of multiphysics phenomena (Tutorial) (exercise course)

Examination

Method Course: Finite element modeling of multiphysics phenomena

Module PHM-0153: Method Cours ting Materials	se: Magnetic and Superconduc-	ECTS Credits: 8		
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	r. Philipp Gegenwart			
Contents:				
Methods of growth and characterization:				
Sample preparation (bulk materials and thin films), e.g.,				
arcmeltingflux-growthsputtering and evaporation				
Sample characterization, e.g.,				
 X-ray diffraction electron microscopy, scanning tunneling microscopy magnetic susceptibility, electrical resistivity specific heat 				
Learning Outcomes / Competences: The students				
 get to know the basic methods of thin-film growth, X-ray diffraction, are trained in planning and perfor learn to evaluate and analyze the physics, including analysis of me theories 	i materials growth and characterization, magnetic susceptibility, dc-conductivity rming complex experiments collected data, are taught to work on pr asurement results and their interpretatio	such as poly- and single crystal growth, , and specific heat measurements roblems in experimental solid state on in the framework of models and		
Workload: Total: 240 h 30 h studying of course content using p 30 h studying of course content using li 90 h studying of course content through 90 h lecture and exercise course (atten	provided materials (self-study) iterarture (self-study) n exercises / case studies (self-study) idance)			
Conditions: Recommended: basic knowledge in solid state physics and quantum mechanics		Credit Requirements: presentation and written report on the experiments (editing time 3 weeks, max. 30 pages)		
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]		
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program			
Parts of the Module				
1. Part of the Module: Method Cours Mode of Instruction: lecture Language: English	e: Magnetic and Superconducting Ma	iterials		

Contact Hours: 2

2. Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: internship Language: English Contact Hours: 4

Examination

Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Cour Spectroscopy	se: Modern Solid State NMR	ECTS Credits: 8		
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. E	Dr. Leo van Wüllen			
Contents: Physical foundations of NMR spectros	сору [6]			
Internal interactions in NMR spectroscopy [6]				
Chemical shift interactionDipole interaction andQuadrupolar interaction				
Magic Angle Spinning techniques [4]				
Modern applications of NMR in materia	als science [14]			
Experimental work at the Solid-State N [60]	IMR spectrometers, computer-aided anal	lysis and interpretation of acquired data		
Learning Outcomes / Competences The students:				
 gain basic knowledge of the phy gain basic practical knowledge of can under guidance plan, per characterization of advanced matching 	sical foundations of modern Solid-State N f operating a solid-state NMR spectrome erform, and analyze modern solid-state N iterials.	NMR spectroscopy, ter, MR experiments for the structural		
Remarks: ELECTIVE COMPULSORY MODULE				
Workload: Total: 240 h 90 h studying of course content throug 30 h studying of course content using 30 h studying of course content using 90 h lecture and exercise course (atter	h exercises / case studies (self-study) literarture (self-study) provided materials (self-study) ndance)			
Conditions: none				
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]		
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program			
Parts of the Module				
1. Part of the Module: Method Cours Mode of Instruction: lecture	e: Modern Solid State NMR Spectrosc	ору		

• M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.

• D. Canet, NMR - concepts and methods, Springer, 1994.

• M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.

• H. Günther NMR spectroscopy, Wiley, 2001.

Language: English Contact Hours: 2

Literature:

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (lecture)

2. Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: internship

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (Practical Course) (internship)

Examination

Method Course: Modern Solid State NMR Spectroscopy

written exam / length of examination: 90 minutes

Module PHM-0158: Introducti	on to Materials (= Seminar)	ECTS Credits: 4			
Version 1.0.0 (since SoSe15) Person responsible for module: Pro	of. Dr. Ferdinand Haider				
Contents: Varying topics for each year, giving modern materials.	an overview into scope, application, requi	rements and preparation of all types of			
Learning Outcomes / Competend The students:	es:				
 know the major principles, ap acquire the competence to concern knowledge in given time to an an	pplications and processes of modern mater ompile knowledge for examples of material n audience.	ials, specific topics and to present this			
Remarks: COMPULSORY MODULE					
Workload: Total: 120 h					
Conditions: Recommended: basic knowledge in materials science		Credit Requirements: presentation with term paper (30 - 45 minutes)			
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]			
Contact Hours: 2	Repeat Exams Permitted: according to the examination regulations of the study program				
Parts of the Module					
Part of the Module: Introduction Mode of Instruction: seminar Language: English Contact Hours: 2	to Materials (Seminar)				
Literature: specific for each topic, to be ga	thered by the students				
Assigned Courses: Introduction to Materials (Semina	ar) (seminar)				

Examination

Introduction to Materials
Module PHM-0159: Laborate	ory Project	ECTS Credits: 10
Version 1.0.0 (since SoSe15) Person responsible for module: F	Prof. Dr. Dirk Volkmer	
Contents: Experimental or theoretical work 3 months.	in a laboratory / research group in the Instit	ute of Physics. Has to be conducted within
Learning Outcomes / Compete The students:	nces:	
 know the basic terms, skills research groups, experience the day to day prepare themselves to con 	s and concepts to pursuit a real research pr life in a research group from within, duct a research project during their Masters	oject in the existing laboratories within the sthesis.
Remarks: COMPULSORY MODULE		
Workload: Total: 300 h		
Conditions: Recommended: solid knowledge in (solid state) Physics, Chemistry and Materials Science, both experimentally and theoretically		Credit Requirements: 1 written report (editing time 2 weeks)
Frequency: each semester	Recommended Semester: from 3.	Minimal Duration of the Module: 0 semester[s]
Contact Hours: 8	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Laboratory Mode of Instruction: internship Language: English Contact Hours: 8	Project	
Literature: • Various		
Examination		

Laboratory Project

project work, not graded

Module PHM-0051: Biophysics	and Biomaterials	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Dr. Si	tefan Thalhammer	_
Contents: Radiation Biophysics Microfluidics Membranes Membranal transport 		
Learning Outcomes / Competences		_
The students:		
 learn models of the (bio)polymer-theory, microfluidic, radiation biophysics, nanobiotechnology, membranes and neuronal networks, adapt skills in the independent processing of problems and deal with current literature. They will be able to translate a biological oberservation into a physical question. Integrated acquirement of soft skills: autonomous working with specialist literature in english, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 		
20 h studying of course content using	literarture (self-study)	
Conditions: Mechanics, Thermodynamics, Statisti Molecular Biology	cal Physics, basic knowledge in	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
1. Part of the Module: Biophysics a Mode of Instruction: lecture Language: English Contact Hours: 3	nd Biomaterials	
1. Part of the Module: Biophysics a Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	nd Biomaterials	

see module description

Contents:		
Radiation Biophysics		
 Radiation sources Interaction of radiation with biological matter Radiation protection principles Low dose radiation LNT model in radiation biophysics Microfluidics Life at Low Reynolds Numbers The Navier-Stokes Equation Low Reynolds Numbers – The Stokes Equation Breaking the Symmetry Membranes Thermodynamics and Fluctuations Thermodynamics of Interfaces Phase Transitions – 2 state model 		
 Lipid membranes and biological membranes, membrane elasticity 		
 Random walk, friction and diffusion Transmembranal ionic transport and ion channels Electrophysiology of cells Neuronal Dynamics Literature: T. Herrmann, Klinische Strahlenbiologie – kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1 		
 J. Freyschmidt, Handbuch diagnostische Radiologie – Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3 S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110 J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9 lecture notes 		
Assigned Courses:		
Biophysics and Biomaterials (lecture)		
2. Part of the Module: Biophysics and Biomaterials (Tutorial)		
Mode of Instruction: exercise course		
Language: English		
Contact Hours: 1		
Assigned Courses:		
Biophysics and Biomaterials (Tutorial) (exercise course)		

Examination

Biophysics and Biomaterials

Module PHM-0160: Dielectric	and Optical Materials	ECTS Credits: 6	
Version 1.0.0 (since SoSe15)			
Person responsible for module: Pr	of. Dr. Joachim Deisenhofer		
Contents:			
Optical materials:			
 Fundamentals of electromagnetic wave propagation in homogenous media (refraction, reflection, transmission, absorption) Evanescent phenomena, optical waveguides, photonic crystals, plasmonics Luminescence, optoelectronics, laser Anisotropic media, non-linear optics 			
Dielectric materials:			
 Dielectric properties of polar oxides: mechanism of polarization, piezoeletricity, ferroelectric polarization Ferroelectric materials: application of ferroelectric and relaxor-ferroelectric materials (e.g. capacitors, actuators, sensors) Multiferroic materials: mechanisms, materials, applications (e.g. sensors, integrated circuits) Supercapacitors: fundamentals of capacitance (e.g. Helmholtz- Gouy-, Chapman-, Stern-Layers), pseudo- and electrostatic capacitance, materials for supercapacitance (e.g. insis liquide) 			
Learning Outcomes / Competen	C95.		
Students know the fundamentals of electromagnetic wave propagation and have a sound background for a broad spectrum of dielectric and optical phenomena. They are able to analyze materials requirements and have the competence to select materials for different kinds of applications.			
Remarks: Elective compulsory module			
Workload: Total: 180 h 60 h lecture and exercise course (20 h studying of course content us 80 h studying of course content th 20 h studying of course content us	attendance) ing literarture (self-study) rough exercises / case studies (self-study) ing provided materials (self-study)		
Conditions:			
Basic knowledge of solid state phy	vsics		
Frequency:	Recommended Semester:	Minimal Duration of the Module:	
each summer semester	from 2.	1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
Part of the Module: Dielectric ar	d Optical Materials		
Mode of Instruction: lecture			

Language: English

Contact Hours: 4

Examination

Dielectric and Optical Materials

Module PHM-0059: Magnetism		ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Dr. Hans-Albrecht Krug von Nidda		
Contents:		
 History, basics 		
 Magnetic moments, classical and 	d quantum phenomenology	
 Exchange interaction and mean- 	field theory	
Magnetic anisotropy and magnet	oelastic effects	
I hermodynamics of magnetic system	stems and applications	
Magnetic domains and domain w Magnetization processes and mi	rais	
AC susceptibility and ESR	sio magnetie treatment	
Spintransport / spintronics		
Recent problems of magnetism		
Learning Outcomes / Competences:		
The students:		
 know the basic properties and ph 	nenomena of magnetic materials and the	ne most important methods and concepts
for their description, like mean-fie	eld theory, exchange interactions and r	nicro magnetic models,
 have the ability to classify different 	nt magnetic phenomena and to apply t	he corresponding models for their
interpretation, and		
have the competence independe	ntly to treat fundamental and typical to	pics and problems of magnetism.
Workload:		
Total: 180 h		
60 h lecture and exercise course (atten	idance)	
20 h studying of course content using i	literarture (self-study)	
20 h studying of course content unoug	provided materials (self-study)	
Conditions:		
basics of solid-state physics and quant	um mechanics	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
annually	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
1 Part of the Module: Magnetism		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		
see module description		
Contents:		

see module description

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

2. Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Magnetism

Module PHM-0048: Physics and Devices	d Technology of Semiconductor	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Contonto:		
 Contents: 1. Basic properties of semiconductors (electronic bandstructure, doping, carrier excitations and carrier transport) 2. Semiconductor diodes and transistors 3. Semiconductor technology 4. Ontoelectronics 		
 Learning Outcomes / Competences: Basic knowledge of solid-state and semiconductor physics such as electronic bandstructure, doping, carrier excitations, and carrier transport. Application of developed concepts (effective mass, quasi-Fermi levels) to describe the basic properties of semiconductors. Application of these concepts to describe and understand the operation principles of semiconductor devices such as diodes, transistors, and optically active elements (LEDs, detectors and lasers). Knowledge of the technologically relevant methods and tools in semiconductor micro- and nanofabrication. Integrated acquisition of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 		
60 h lecture and exercise course (att	endance)	
Conditions: recommended prerequisites: basic ki quantum mechanics.	nowledge in solid state physics and	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
1. Part of the Module: Physics and Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description	Technology of Semiconductor Devices	5
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

2. Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Examination

Physics and Technology of Semiconductor Devices

Version 1.0.0 (since WS09/10) Person responsible for module: Prof. Dr. Hubert J. Krenner Contents: 1. Semiconductor quantum wells, wires and dots, low dimensional electron systems 2. Magnetotransport in low-dimensional systems. Quanten-Hall-Effect, Quantized conductance 3. Optical properties of quantum wells and quantum dots and their application in modern optoelectonic devices 4. Narowires, Carbon Nanotubes, Graphene 5. Nanophotonics, photonic band gap materials, photonic crystals 6. Emerging concepts such as Quantum Computing and Quantum Information Processing Learning Outcomes / Competences: • Basic knowledge of the fundamental concepts in modern nanoscale science • Profound knowledge of on high-frequency electronics and optoelectronics • Knowledge of different fabrication approaches using bottom-up and top-down techniques • Application of these concepts to tackle present problems in nanophysics • Integrated acquirement of 5oft skills: automomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study)<	Module PHM-0049: Nanostructur	es / Nanophysics	ECTS Credits: 6	
Person responsible for module: Prof. Dr. Hubert J. Krenner Contents: 1. Semiconductor quantum wells, wires and dots, low dimensional electron systems 2. Magnetoransport in low-dimensional systems, Quanten-Hail-Effect, Quantized conductance 3. Optical properties of quantum wells and quantum dots and their application in modern optoelectonic devices 4. Nanowires, Carbon Nanotubes, Graphene 5. Nanophotonics, photonic band gap materials, photonic crystals 6. Emerging concepts such as Quantum Computing and Quantum Information Processing Learning Outcomes / Competences: 9. Profound knowledge of fund-dimental concepts in modern nanoscale science 9. Profound knowledge of fund-dimental concepts in modern anaoscale science 9. Profound knowledge of fund-dimental concepts in and photen-up and top-down techniques 9. Application of these concepts to tackle present problems in nanophysics 9. Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content through exercises / case studies (self	Version 1.0.0 (since WS09/10)			
Contents: Semiconductor quantum wells, wires and dots, low dimensional electron systems Magnetotransport in low-dimensional systems, Quanten-Hall-Effect, Quantized conductance Optical properties of quantum wells and quantum dots and their application in modern optoelectonic devices Nanowines, Carbon Nanotubes, Graphene Nanowines, Carbon Nanotubes, Graphene Nanowines, Carbon Nanotubes, Graphene Sasic knowledge of the fundamental concepts in modern nanoscale science Profound knowledge of low-dimensional semiconductor structures and how these systems can be applied for novel functional devices for high-frequency electronics and optoelectronics Knowledge of different fabrication approaches using bottom-up and top-down techniques Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using involved materials (self-study) 20 h studying of course content twing literature (self-study) 20 h studying of course course (atterdance) Prequency: Repeat Exams Permitted: according to the examination regulations of the study program Prest of the Module: Parts of the Module: Nanostructures / Nanophysises Mode of Instruction: lecture L	Person responsible for module: Prof. D	r. Hubert J. Krenner		
 Semiconductor quantum wells, wires and dots, low dimensional electron systems Magnetotransport in low-dimensional systems, Quanten-Hall-Effect, Quantized conductance Optical properties of quantum wells and duantum das and their application in modern optoelectonic devices Nanowires, Carbon Nanotubes, Graphene Nanophotonics, photonic band gap materials, photonic crystals Emerging concepts such as Quantum Computing and Quantum Information Processing Learning Outcomes / Competences: Basic knowledge of the fundamental concepts in modern nanoscale science Profound knowledge of the fundamental concepts in modern nanoscale science Profound knowledge of lidferent tabrication approaches using bottom-up and top-down techniques Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using interature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using interature (self-study) 80 h studying of course content using interature (self-study) 80 h studying of course content using interature (self-study) 80 h studying of course content using interature (self-study) 80 h studying of course content using interature (self-study) 80 h studying of course content using interature (self-study) 80 h studying of course content using interature (self-study) 80 h studying of course content using interature	Contents:			
2. Magnetortansport in low-dimensional systems, Quanteh-Hait-Erfect, Quantized conductance 3. Optical properties of quantum wells and quantum dots and their application in modern optoelectonic devices 4. Nanowhres, Carbon Nanotubes, Graphene 5. Nanophotonics, photonic band gap materials, photonic crystals 6. Emerging concepts such as Quantum Computing and Quantum Information Processing Learning Outcomes / Competences: 9. Basic knowledge of the fundamental concepts in modern nanoscale science 9. Profound knowledge of low-dimensional semiconductor structures and how these systems can be applied for novel functional devices for high-frequency electronics and optoelectronics 6. Knowledge of different fabrication approaches using bottom-up and top-down techniques 6. Application of these concepts to tackle present problems in nanophysics 7. Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content using provided materials (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using treation regulations of the study program Prequency: Recommended Semester: from 2. Parts of the Module Parts of the Module: Nanostructures / Nanophysics Node of instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contents:	1. Semiconductor quantum wells, w	rires and dots, low dimensional electron	systems	
A Nanowies, Carbon Nanotubes, Graphene Anonytotics, photonic band gap materials, photonic crystals Emerging concepts such as Quantum Computing and Quantum Information Processing Learning Outcomes / Competences: Basic knowledge of the fundamental concepts in modern nanoscale science Profound knowledge of low-dimensional semiconductor structures and how these systems can be applied for novel functional devices for high-frequency electronics and optoelectronics Knowledge of different fabrication approaches using bottom-up and top-down techniques Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h O h studying of course content using provided materials (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: ach winter semester Part of the Module: Part of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contents:	 Magnetotransport in low-dimensi Optical properties of quantum we 	onal systems, Quanten-Hall-Effect, Quar	itized conductance	
 5. Nanophotonics, photonic band gap materials, photonic crystals 6. Emerging concepts such as Quantum Computing and Quantum Information Processing Learning Outcomes / Competences: Basic knowledge of the fundamental concepts in modern nanoscale science Profound knowledge of low-dimensional semiconductor structures and how these systems can be applied for novel functional devices for high-frequency electronics and optoelectronics Knowledge of different fabrication approaches using bottom-up and top-down techniques Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for tearnwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using browled materials (self-study) 80 h studying of course content using literature (self-study) 80 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: each winter semester Contact Hours: A splations of the study program Pars of the Module: Nanophysics Kepet Exams Permitted: according to the examination regulations of the study program Pars of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Langing Outcome: see module description 	4. Nanowires, Carbon Nanotubes, C	Graphene		
6. Emerging concepts such as Quantum Computing and Quantum Information Processing Learning Outcomes / Competences: Basic knowledge of the fundamental concepts in modern nanoscale science Profound knowledge of of we-dimensional semiconductor structures and how these systems can be applied for novel functional devices for high-frequency electronics and optoelectronics Knowledge of different fabrication approaches using bottom-up and top-down techniques Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 60 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: each winter semester Trom 2. Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module: Nanophysics Kepet Exams Permitted: according to the examination regulations of the study program Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Kepet Exams Permitted: according to the examination regulations of the study program Frequency: each summer semester Context tours: 4 Learning Outcome: see module description	5. Nanophotonics, photonic band ga	ap materials, photonic crystals		
Learning Outcomes / Competences: Basic knowledge of the fundamental concepts in modern nanoscale science Profound knowledge of low-dimensional semiconductor structures and how these systems can be applied for novel functional devices for high-frequency electronics and optoelectronics Knowledge of different fabrication approaches using bottom-up and top-down techniques Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: according to the examination regulations of the study program Parts of the Module Part of the Module Part of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: ac the summer semester Contact Hours: 4 Learning Outcome: see module description	6. Emerging concepts such as Qua	ntum Computing and Quantum Informati	on Processing	
 Basic knowledge of the fundamental concepts in modern nanoscale science Profound knowledge of low-dimensional semiconductor structures and how these systems can be applied for novel functional devices for high-frequency electronics and optoelectronics Knowledge of different fabrication approaches using bottom-up and top-down techniques Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: act whether semester from 2. Repare Exams Permitted: according to the examination regula	Learning Outcomes / Competences:			
 Protoution knowledge of low-uniterisional settinconductor structures and now these systems can be applied for novel functional devices for high-frequency electronics and poleelectronics Knowledge of different fabrication approaches using bottom-up and top-down techniques Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content using literature (self-study) 80 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency:	Basic knowledge of the fundame	ntal concepts in modern nanoscale scier		
 Knowledge of different fabrication approaches using bottor-up and top-down techniques Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content using literature (self-study) 80 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency:	 Protound knowledge of low-almender novel functional devices for high- 	frequency electronics and optoelectronic	s	
 Application of these concepts to tackle present problems in nanophysics Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity ir teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h lecture and exercises course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency:	Knowledge of different fabrication	n approaches using bottom-up and top-d	own techniques	
 Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content using literatrure (self-study) 80 h studying of course content using literatrure (self-study) 80 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: according to the examination regulations of the study program Parts of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contact Hours: 4 	 Application of these concepts to a 	tackle present problems in nanophysics		
bresentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 60 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: each winter semester from 2. Contact Hours: 4 Parts of the Module Part of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description	Integrated acquirement of soft sk	ills: autonomous working with specialist	literature in English, acquisition of	
Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content using literarture (self-study) 20 h studying of course content using literarture (self-study) 80 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: Recommended Semester: each winter semester from 2. Contact Hours: Repeat Exams Permitted: 4 according to the examination regulations of the study program Parts of the Module: Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: Language: see module description See module description	thinking and working	y for teamwork, ability to document expe	rimental results, and interdisciplinary	
Total: 180 h 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 60 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: each winter semester from 2. Contact Hours: 4 according to the examination regulations of the Module Parts of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contents:	Workload:			
20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 60 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: each winter semester Recommended Semester: from 2. Minimal Duration of the Module: 1 semester[s] Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module: Node of Instruction: lecture Language: English Frequency: each summer semester Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Semester Summer semester Contact Hours: 4 Learning Outcome: see module description Contents: Seme module description	Total: 180 h			
80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 60 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: each winter semester from 2. Minimal Duration of the Module: according to the examination regulations of the study program Parts of the Module Parts of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Content::	20 h studying of course content using p	provided materials (self-study)		
20 h studying of course content using literarture (self-study) 60 h lecture and exercise course (attendance) Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: Recommended Semester: each winter semester from 2. Contact Hours: Repeat Exams Permitted: a ccording to the examination regulations of the Module: nesster[s] Parts of the Module Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Vanophysics Mode of lestruction: lecture Language: English Frequency: each summer semester Learning Outcome: see module description Learning to the sectific to the sect	80 h studying of course content through	h exercises / case studies (self-study)		
Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: Recommended Semester: from 2. Minimal Duration of the Module: according to the examination regulations of the study program 1 semester[s] Parts of the Module Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Vanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Learning Outcome: see module description	20 h studying of course content using li	iterarture (self-study)		
Conditions: recommended prerequisites: basic knowledge in solid-state physics and quantum mechanics. Frequency: Recommended Semester: from 2. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Image: Semester[s] Parts of the Module: Nanophysics Mode of Instruction: Image: Semester Language: English Frequency: each summer semester Learning Outcome: see module description Contents: Image: Semester	60 h lecture and exercise course (atten			
recommended prerequisites, basic knowledge in solid-state physics and quantum mechanics. Minimal Duration of the Module: frequency: Recommended Semester: Minimal Duration of the Module: each winter semester from 2. 1 semester[s] Contact Hours: Repeat Exams Permitted: 1 semester[s] 4 according to the examination regulations of the study program Parts of the Module Parts of the Module: Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contents: the base is in the study program the base is in the study program	Conditions:	wledge in solid-state physics and		
mechanics.Recommended Semester: from 2.Minimal Duration of the Module: 1 semester[s]Contact Hours: 4Repeat Exams Permitted: according to the examination regulations of the study programImage: Semester[s]Parts of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4Image: Semester Semester Semester SemesterLearning Outcome: see module descriptionImage: Semester Semester SemesterImage: Semester	quantum	wiedge in solid-state physics and		
Frequency: Recommended Semester: Minimal Duration of the Module: each winter semester from 2. 1 semester[s] Contact Hours: Repeat Exams Permitted: 1 semester[s] 4 according to the examination regulations of the study program Image: Semester Parts of the Module Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Image: Semester Contact Hours: 4 Learning Outcome: see module description	mechanics.			
each winter semesterfrom 2.1 semester[s]Contact Hours: 4Repeat Exams Permitted: according to the examination regulations of the study programImage: Contact Hours: Contact Hours:Parts of the ModuleNanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4Image: Contact Hours: Contact Hours: 4Learning Outcome: see module descriptionImage: Contact Hours: Contents:Image: Contact Hours: Contact Hours:	Frequency:	Recommended Semester:	Minimal Duration of the Module:	
Contact Hours: 4Repeat Exams Permitted: according to the examination regulations of the study programParts of the ModuleParts of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4Learning Outcome: see module descriptionContents:	each winter semester	from 2.	1 semester[s]	
4 according to the examination regulations of the study program Parts of the Module Parts of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contents: Learning Contents	Contact Hours:	Repeat Exams Permitted:		
regulations of the study program Parts of the Module Part of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description	4	according to the examination		
Parts of the Module Part of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contents:		regulations of the study program		
Part of the Module: Nanostructures / Nanophysics Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contents:	Parts of the Module			
Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contents:	Part of the Module: Nanostructures / Nanophysics			
Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome: see module description Contents:	Mode of Instruction: lecture			
Contact Hours: 4 Learning Outcome: see module description Contents:	Language: English			
Learning Outcome: see module description Contents:	Contact Hours: 4			
see module description Contents:	Learning Outcome:			
Contents:	see module description			
	Contents:			
see module description	see module description	see module description		

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)
- V. V. Mitin et al.: Introduction to Nanoelectronics (Cambridge University Press)
- Yariv: Quantum Electronics (Wiley)
- Yariv und Yeh: Photonics (Oxford University Press)

Assigned Courses:

Nanostructures / Nanophysics (lecture)

Examination

Nanostructures / Nanophysics

oral exam / length of examination: 30 minutes

Module PHM-0174: Theoretical C	oncepts and Simulation	ECTS Credits: 6
Person responsible for module: Prof. Dr. Liviu Chioncel		
Contents:		
1 Introduction: operating systems	programming languages, data visualizati	ion tools
2. Basic numerical methods: interpo	plation, integration	
3. Ordinary and Partial Differential E	Equations (e.g., diffusion equation, Schrö	odinger equation)
4. Molecular dynamics		<u> </u>
5. Monte Carlo simulations		
Learning Outcomes / Competences:		
The students:		
 know the principal concepts of the 	ermodynamics and statistical physics as	well as the numerical methods
relevant in material science,		
 are able to solve simple problems 	s numerically. They are able to write the	codes and to present the results,
 have the expertise to find the num 	nerical method appropriate for the given	problem and to judge the quality and
validity of the numerical results,		
 Integrated acquirement of soft sk 	ills: independent handling of hard- and s	oftware while using English
documentations, ability to investig	gate abstract circumstances with the hel	p of a computer and present the results
in written and oral form, capacity	for teamwork.	
Remarks:		
Links to software related to the course:		
 http://www.bloodshed.net/ 		
 http://www.cplusplus.com/doc/tut 	orial/	
 http://www.cvgwin.com/ 		
 http://xmd.sourceforge.net/downlog 	oad.html	
 http://www.rasmol.org/ 		
 http://felt.sourceforge.net/ 		
Workload:		
Total: 180 h		
80 h studying of course content through	n exercises / case studies (self-study)	
20 h studying of course content using li	terarture (self-study)	
20 h studying of course content using p	provided materials (self-study)	
60 h lecture and exercise course (atten	dance)	
Conditions:		Credit Requirements:
Recommended: basic knowledge of gu	antum mechanics thermodynamics	project work in small groups including
and numerical methods as well as of a	programming language	a written summary of the results
		(ca. 10-20 pages) as well as an oral
		presentation
Fragmanav	Decommonded Semi-ster	Minimal Duration of the Medules
riequency: each summer semester	from 2	1 semester[s]
	Demont Example Demonstration	
	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		

Parts of the Module

1. Part of the Module: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Tao Pang, An Introduction to Computational Physics (Cambridge University Press)
- J. M. Thijssen, Computational Physics (Cambridge University Press)
- Koonin, Meredith, Computational Physics (Addison-Weseley)
- D. C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press)
- W. H. Press et al, Numerical Recipes (Cambridge University Press)

2. Part of the Module: Theoretical Concepts and Simulation (Project)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Theoretical Concepts and Simulation

seminar / length of examination: 30 minutes

Module PHM-0052: Solid State Radiation and Neutrons	e Spectroscopy with Synchrotron	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. Dr. Christine Kuntscher		
Contents:		
 Electromagnetic radiation: description, generation, detection [5] Spectral analysis of electromagnetic radiation: monochromators, spectrometer, interferometer [2] Excitations in the solid state: Dielectric function [2] Infrared spectroscopy Ellipsometry Photoemission spectroscopy X-ray absorption spectroscopy Neutrons: Sources, detectors Neutron scattering 		
Learning Outcomes / Competenc	es:	
The students:		
 know the basics of spectroscopy and important instrumentation and methods, have acquired the skills of formulating a mathematical-physical ansatz in spectroscopy and can apply these in the field of solid state spectroscopy, have the competence to deal with current problems in solid state spectroscopy autonomously, and are able to judge proper measurement methods for application. Integrated acquirement of soft skills. 		
Workload: Total: 180 h 20 h studying of course content usi 20 h studying of course content usi 80 h studying of course content thro 60 h lecture and exercise course (a	ng provided materials (self-study) ng literarture (self-study) pugh exercises / case studies (self-study) ttendance)	
Conditions: basic knowledge in solid-state phys	ics	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
1. Part of the Module: Solid State Mode of Instruction: lecture Language: English Contact Hours: 3	Spectroscopy with Synchrotron Radiat	ion and Neutrons
Learning Outcome:		

see module description

Contents:

see module description

- H. Kuzmany, Solid State Spectroscopy (Springer)
- N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston)
- J. M. Hollas, Modern Spectroscopy

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (lecture)

2. Part of the Module: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial) (exercise course)

Examination

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

oral exam / length of examination: 30 minutes

Module PHM-0056: Ion-Solid Inte	raction	ECTS Credits: 6	
Version 1.0.0 (since WS09/10)	Version 1.0.0 (since WS09/10)		
Person responsible for module: apl. Pr	of. Dr. Helmut Karl		
 Contents: Introduction (areas of scientific and technological application, principles) Fundamentals of atomic collision processes (scattering, cross-sections, energy loss models, potentials in binary collision models) Ion-induced modification of solids (integrated circuit fabrication with emphasis on ion induced phenomena, ion implantation, radiation damage, ion milling and etching (RIE), sputtering, erosion, deposition) Transport phenomena Analysis with ion beams 			
Learning Outcomes / Competences:			
 know the physical principles and the basical mechanisms of the interaction between particles and solid state bodies in the energy range of eV to MeV, are able to choose adequate physical models for specific technological and scientific applications, and have the competence to work extensively autonomous on problems concerning the interaction between ions and solid state bodies. Integrated acquirement of soft skills. 			
Total: 180 h 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study)			
Conditions: Basic Courses in Physics I–IV, Solid S	tate Physics, Nuclear Physics		
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
1. Part of the Module: Ion-Solid Interaction Mode of Instruction: lecture Language: English Contact Hours: 3			
Learning Outcome: see module description			
Contents: see module description			

- R. Smith, Atomic and ion collisions in solids and at surfaces (Cambridge University Press, 1997)
- E. Rimini, Ion implantation: Basics to device fabrication (Kluwer, 1995)
- W. Eckstein: Computer Simulation of Ion-Solid Interactions (Springer, 1991)
- H. Ryssel, I. Ruge: Ionenimplantation (Teubner, 1978)
- Y. H. Ohtsuki: Charged Beam Interaction with Solids (Taylor & Francis, 1983)
- J. F. Ziegler (Hrsg.): The Stopping and Range of Ions in Solids (Pergamon)
- R. Behrisch (Hrsg.): Sputtering by Particle Bombardment (Springer)
- M. Nastasi, J. K. Hirvonen, J. W. Mayer: Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, 1996)
- http://www.SRIM.org

2. Part of the Module: Ion-Solid Interaction (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Ion-Solid Interaction

Module PHM-0057: Physics of T	nin Films	ECTS Credits: 6	
Version 1.0.0 (since WS09/10)			
Person responsible for module: Dr. Ge	rman Hammerl		
Contents:		<u>.</u>	
Laver growth			
Thin film technology			
Analysis of thin films			
 Properties and applications of th 	in films		
Learning Outcomes / Competences			
 I he students: know methods of thin film technology and material properties and applications of thin films, have acquired skills of grouping the various technologies for producing thin layers with respect to their properties and applications, and have the competence to deal with current problems in the field of thin film technology largely autonomous. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, ability to internet experimental acquire 			
Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance)			
none			
Frequency: every 3rd semester	Recommended Semester:	Minimal Duration of the Module:	
Contact Hours:	Popost Exams Pormitted:		
	according to the examination		
	regulations of the study program		
Parts of the Module		L	
Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English Contact Hours: 4			
Learning Outcome: see module description			
Contents: see module description			
 Literature: H. Frey, G. Kienel, Dünnschichttechnologie (VDI Verlag, 1987) H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer Verlag, 2001) 			

- A. Wagendristel, Y. Wang, An Introduction to Physics and Technology of Thin Films (World Scientific Publishing, 1994)
- M. Ohring, The Materials Science of Thin Films (Academic Press, 1992)

Assigned Courses:

Physics of Thin Films (lecture)

Examination

Physics of Thin Films

Module PHM-0058: Organic Sem	iconductors	ECTS Credits: 6	
Version 1.0.0 (since WS09/10)		<u> </u>	
Person responsible for module: Prof. D	or. Wolfgang Brütting		
Contents: Introduction			
 Materials and preparation Structural properties Electronic structure Optical and electrical properties 	 Materials and preparation Structural properties Electronic structure Optical and electrical properties 		
Devices and Applications			
 Organic metals Light-emitting diodes Field-effect transistors Solar cells and laser 			
Learning Outcomes / Competences:			
 Ine students: know the basic structural and electronic properties of organic semiconductors as well as the essential function of organic semiconductor devices, have acquired skills for the classification of the materials taking into account their specific features in the functioning of components, and have the competence to comprehend and attend to current problems in the field of organic electronics. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, ability to integrated acquirement of soft skills: 			
Workload: Total: 180 h 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 60 h lecture and exercise course (attendance)			
Conditions: It is strongly recommended to complete addition, knowledge of molecular physi	e the module solid-state physics first. In ics is desired.		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
1. Part of the Module: Organic Semiconductors Mode of Instruction: lecture Language: English Contact Hours: 3			
Learning Outcome: see module description			

Contents:

see module description

Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- W. Brütting (editor): Physics of Organic Semiconductors (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)

2. Part of the Module: Organic Semiconductors (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Examination

Organic Semiconductors

Module PHM-0060: Low Tempera	ature Physics	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: PD Dr	. Reinhard Tidecks	
Contents:		
Introduction		
Thermodynamic fundamentals		
Gas liquification		
 Properties of liquid helium 		
Cryogenic engineering		
Learning Outcomes / Competences		
The students:		
 know the basic properties of marginal 	tter at low temperatures and the correspo	onding experimental techniques,
have acquired the theoretical kn	owledge to perform low-temperature mea	asurements,
and know how to experimentally	investigate current problems in low-temp	berature physics.
Workload:		
10tal: 180 h	ndance)	
80 h studying of course content through	h exercises / case studies (self-study)	
20 h studying of course content using	literarture (self-study)	
20 h studying of course content using	provided materials (self-study)	
Conditions:		
Physik IV - Solid-state physics		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
every 3rd semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
1. Part of the Module: Low Temperature Physics		
Mode of Instruction: lecture		
Language: English		
Learning Outcome:		
see module description		

Contents:

- Introduction
 - History, methods, realizations, and significance
- Thermodynamic fundamentals
 - Temperature, working cycles, real gases, Joul-Thomson-Effect
- · Gas liquification
 - Air, hydrogen, helium
 - Separation of Oxygen and nitrogen
 - Storage and transfer of liquefied gases, superinsulation
- · Properties of liquid helium
 - Production and thermodynamic properties of4He and3He
 - Phase diagrams (4He,3He)
 - Superfluidity of4He
 - Experiments, Two-Fluid-Model
 - Bose-Einstein-Condensation
 - Excitation spectrum, critical velocity
 - Rotating Helium
 - Normal and superfluid3He
 - -4He /3He-mixtures
- Cryogenic engineering
 - Bath-Cryostats (Helium-4, Helium-3),
 - -4He /3He-Dilution-Refrigerators
 - Pomeranchuck-Cooling
 - Adiabatic demagnetization
 - Primary and secondary thermometers

Literature:

- C. Enss, S. Hunklinger, Tieftemperaturphysik (Springer)
- F. Pobell, Matter and Methods at Low Temperatures (Springer)

2. Part of the Module: Low Temperature Physics (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Examination

Low Temperature Physics

oral exam / length of examination: 30 minutes

Module PHM-0068: Spintro	nics	ECTS Credits: 6
Version 1.0.0 (since SoSe14)		
Person responsible for module:	Dr. German Hammerl	
Contents:		
Introduction into magnetism		
Basic spintronic effects and devices		
Novel materials for spintronic applications		
 Spin-sensitive experiment 	al methods	
 Semiconductor based spin 	ntronics	
Learning Outcomes / Competer	ences:	
The students:		
 know the fundamental pro 	perties of magnetic materials, the basic spir	ntronic effects, and the related device
structures,		
 have acquired skills in ide 	ntifying materials with respect to their applic	ability for spintronic devices,
 and have the competence 	to deal with current problems in the field of	semi-conductor and metal based
spintronics largely autono	mous.	
Workload:		
Total: 180 h		
60 h lecture and exercise course	e (attendance)	
80 h studying of course content	through exercises / case studies (self-study)
20 h studying of course content	using literarture (self-study)	
20 h studying of course content	using provided materials (self-study)	
Conditions:		
none		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
1. Part of the Module: Spintro	nics	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		

see module description

Contents:

see module description

Literature:

- N. W. Ashcroft, N. D. Mermin, Solid State Physics, Cengage Learning (2011), ISBN: 81-315-0052-7
- C. Felser, G. H. Hechter, Spintronics From Materials to Devices, Springer (2013), ISBN: 978-90-481-3831-9
- S. Bandyopadhyay, M. Cahay, Introduction to Spintronics, CRC Press (2008), ISBN: 978-0-9493-3133-6

2. Part of the Module: Spintronics (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Spintronics

Module PHM-0066: Superconduc	ctivity	ECTS Credits: 6
Version 1.0.0 (since WS11/12)		<u> </u>
Person responsible for module: PD Dr	. Reinhard Tidecks	
Contents: Introductory Remarks and Litera History and Main Properties of th Phenomenological Thermodynau Ginzburg-Landau Theory Microscopic Theories Fundamental Experiments on th Josephson-Effects High Temperature Superconduct Application of Superconductivity	ture ne Superconducting State, an Overview mics and Electrodynamics of the SC e Nature of the Superconducting State tors	
Learning Outcomes / Competences	1	
The students:		
 will get an introduction to superconductivity, by a presentation of experimental results they will learn the fundamental properties of the superconducting state, are informed about the most important technical applications of superconductivity. Special attention will be drawn to the basic concepts of the main phenomeno-logical and microscopic theories of the superconducting state, to explain the experimental observations. For self-studies a comprehensive list of further reading will be supplied. 		
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study)		
Conditions: Physik IV – Solid-state physics Theoretical physics I-III 		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
every 3rd semester	from 2.	1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Superconductiv Mode of Instruction: lecture Language: English Contact Hours: 4	ity	

Learning Outcome:

see module description

Contents:

see module description

- W. Buckel, Supraleitung, 5. Auflage (VCH, Weinheim, 1994)
- W. Buckel und R. Kleiner, Supraleitung, 6. Auflage (WILEY-VCH, Weinheim, 2004)
- M. Tinkham, Introduction to Superconductivity, 2nd Edition (McGraw-Hill, Inc., New York, 1996, Reprint by Dover Publications Inc. Miniola , 2004)
- Weitere Literatur wird in der Vorlesung angegeben

Assigned Courses:

Superconductivity (lecture)

Examination

Superconductivity

oral exam / length of examination: 30 minutes

Module PHM-0069: Applied Mag	netic Materials and Methods	ECTS Credits: 6	
Version 1.0.0 (since WS14/15) Person responsible for module: Prof. Dr. Manfred Albrecht			
Contents: Basics of magnetism Ferrimagnets, permanent magnetic Magnetic nanoparticles Superparamagnetism Exchange bias effect Magnetoresistance, sensors Experimental methods (e.g. Möl	ets 3bauer Spectroscopy, mu-SR)		
 Learning Outcomes / Competences: The students know the basic terms and concepts of magnetism, get a profound understanding of basic physical relations and their applications, acquire the ability to describe qualitative observations, interpret quantitative measurements, and develop mathematical descriptions of physical effects of chosen magnetic material systems. Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary this literature. 			
Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 60 h lecture and exercise course (attendance)			
Conditions: Basics in solid state physics			
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
1. Part of the Module: Applied Magnetic Materials and Methods Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:			
Contents: see module description			
Literature: to be announced at the beginning of the lecture			
Assigned Courses: Applied Magnetic Materials and Methods (lecture)			

2. Part of the Module: Applied Magnetic Materials and Methods (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Applied Magnetic Materials and Methods (Tutorial) (exercise course)

Examination

Applied Magnetic Materials and Methods

oral exam / length of examination: 30 minutes

Module PHM-0198: Special Topics in Materials Science (Foreign Institution)		ECTS Credits: 20
Version 1.0.0 Person responsible for module: Pr	of. Dr. Ferdinand Haider	
Conditions: studies at an international partner	institution	Credit Requirements: written exam, oral exam, report, etc.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: semester[s]
	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		

Part of the Module: Special Topics in Materials Science (Foreign Institution) Language: English

Examination

Special Topics in Materials Science (Foreign Institution)

module exam, written exam, oral exam, report, etc.

Module PHM-0054: Chemical Phy	vsics II	ECTS Credits: 6
Version 1.0.0 (since WS09/10) Person responsible for module: Prof. Dr. Wolfgang Scherer		
 Contents: Charge density distribution from experiment and theory Analysis of topology of spin- and charge density distribution The nature of chemical bondings Analysis of wave functions with localized orbitals Modern quantum chemical methods: configuration interaction 		
 Learning Outcomes / Competences: The students: know the basic quantum chemical methods of chemical physics to interpret electronical structures in molecules and solid-state bodies, have therefore the ability to apply amongst other things the quantum theory of atoms in molecules (QTAIM) and established electron localization functions (such as ELF) to analyze charge- and spin density distributions, have the competence to do autonomously simple quantum chemical calculations using the density functional theory (DFT) and to interpret the electronical structure of functional molecules and materials with regard to chemical and physical properties. Integrated acquirement of soft skills: ability to specialize in a scientific topic and to apply the acquired knowledge 		
Remarks: It is possible for students to do quantum chemical calculations autonomously and analyze electronical structures of		
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study)		
Conditions: It is highly recommended to complete t	he module Chemical Physics I first.	
Frequency: each summer semester Contact Hours: 4	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module: 1 semester[s]
Parts of the Module		
1. Part of the Module: Chemical Physics II Mode of Instruction: lecture Language: English Contact Hours: 3		
Learning Outcome: see module description		

Contents:

- · Charge density distribution from experiment and theory
- Analysis of topology of spin- and charge density distribution
- The nature of chemical bondings
- · Analysis of wave functions with localized orbitals
- · Modern quantum chemical methods: configuration interaction

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press)
- P. Popelier, Atoms in Molecules: An Introduction(Pearson Education Limited)
- F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

2. Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Examination

Chemical Physics II

Module PHM-0161: Coordin	ation Materials	ECTS Credits: 6	
Version 1.0.0 (since SoSe15)	Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. Dr. Dirk Volkmer			
Contents:			
A)			
 Historical development of of Structures and nomenclature Chemical bonds in transition Stability of transition metal Characteristic reactions [4] 	 Historical development of coordination chemistry [1] Structures and nomenclature rules [2] Chemical bonds in transition metal coordination compounds [3] Stability of transition metal compounds [2] Characteristic reactions [4]B 		
B) Selected classes of functional	materials		
 Bioinorganic chemistry [2] Coordination compounds i Coordination polymers / m Cluster compounds [2] 	 Bioinorganic chemistry [2] Coordination compounds in medical applications [1] Coordination polymers / metal-organic frameworks [4] Cluster compounds [2] 		
Learning Outcomes / Compete The students	ences:		
 transition metal compounds), broaden their capabilities to interpret UV/vis absorption spectra and to predict stability and reactivity of coordination compounds, learn how to transfer concepts of coordination chemistry onto topics of materials sciences. Integrated acquirement of soft skills. 			
ELECTIVE COMPULSORY MO	DULE		
Workload: Total: 180 h 20 h studying of course content to 20 h studying of course content to 80 h studying of course content to 60 h lecture and exercise course	using provided materials (self-study) using literarture (self-study) hrough exercises / case studies (self-study) (attendance)		
Conditions: Recommended: The lecture course is based on the courses "Chemistry I", "Chemistry II"			
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
1. Part of the Module: Coordin	ation Materials		

Mode of Instruction: lecture Language: English Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

2. Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Coordination Materials

Module PHM-0113: Advanced	J Solid State Materials	ECTS Credits: 6	
Version 1.0.0 (since WS10/11)			
Person responsible for module: Pr	of. Dr. Henning Höppe		
Contents:			
 Repitition of concepts 			
 Novel silicate-analogous ma 	Novel silicate-analogous materials		
Luminescent materials			
Pigments			
Heterogeneous catalysis			
Learning Outcomes / Competen	ces:		
The students are aware of c	orrelations between composition, structure	s and properties of functional materials,	
acquire skills to predict the p	roperties of chemical compounds, based	on their composition and structures,	
 gain competence to evaluate will know how to measure the 	The potential of functional materials for fully a properties of these materials	ture technological developments, and	
Integrated acquirement of sc	e properties of these materials.		
Workload:			
Total: 180 h	sing provided materials (self study)		
80 h studying of course content th	rough exercises / case studies (self-study)		
20 h studying of course content us	sing literarture (self-study)		
60 h lecture and exercise course (attendance)		
Conditions:			
Contents of the modules Chemie I	, and Chemie II or Festkörperchemie		
(Bachelor Physik, Bachelor Materi	alwissenschaften)		
Frequency:	Recommended Semester:	Minimal Duration of the Module:	
each summer semester	from 2.	1 semester[s]	
Contact Hours:	Repeat Exams Permitted:		
4	according to the examination		
	regulations of the study program		
Parts of the Module			
Part of the Module: Advanced S	olid State Materials		
Mode of Instruction: lecture			
Language: English			
Contact Hours: 4			
Learning Outcome:			
see module description			
Contents:			
see module description			
l iterature:			

- A. West, Solid State Chemistry and Its Applications
- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

Examination

Advanced Solid State Materials

Module PHM-0162: Solid State NMR Spectroscopy and Diffraction Methods		ECTS Credits: 6	
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Georg Eickerling			
Contents: Physical foundations of NMR spectroso	сору		
Internal Interactions in solid state NMR	Internal Interactions in solid state NMR spectroscopy		
Magic Angle Spinning NMR			
Basic Introduction to X-ray and neutror	diffraction and crystallography		
X-ray/neutron scattering			
Data collection and reduction technique	es		
Symmetry and space group determinat	ion		
Structure determination and refinement			
 The Patterson method Direct methods Rietveld refinements Difference Fourier techniques Charge density determination/analysis 			
Remarks: ELECTIVE COMPULSORY MODULE			
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study)			
Conditions:			
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
1. Part of the Module: Solid State NM Mode of Instruction: lecture	IR Spectroscopy and Diffraction Meth	ods	

Language: English

Contact Hours: 3

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.
- 5. C. Hammond, The Basis of Crystallography and Diffraction, Oxford University Press Inc., New York, 2001.
- 6. W. Clegg, A. J. Blake, R. O. Gould, P. Main, Crystal Structure Analysis, Principle and Practice, Oxford University Press Inc., New York, 2001.
- 7. G. Giacovazzo, Fundamentals of Crystallography, Oxford University Press Inc., New York, 1994.
- 8. R. A. Young, The Rietveld Method, Oxford University Press Inc., New York, 2002.
- 9. W. Massa, Crystal Structure Determination, Springer, Berlin, 2004.

2. Part of the Module: Solid State NMR Spectroscopy and Diffraction Methods (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Solid State NMR Spectroscopy and Diffraction Methods
Module PHM-0114: Porous Funct	ional Materials	ECTS Credits: 6	
Version 1.0.0 (since SS11)			
Person responsible for module: Prof. D	r. Dirk Volkmer		
Person responsible for module: Prof. Dr. Dirk Volkmer Contents: Overview and historical developments Structural families of porous frameworks Structure Determination and Computer Modelling Synthesis strategies Adsorption and diffusion Thermal analysis methods Catalytic properties Advanced applications and current trends Learning Outcomes / Competences: The students shall acquire knowledge about design principles and synthesis of porous functional materials, broaden their capabilities to characterize porous solid state materials with special emphasis laid upon sorption and thermal analysis, become introduced into typical technical applications of porous solids.			
Remarks: Subsequent to the lecture course, the s ``Porous Materials Synthesis and Char	students can take part in a hands-on me acterization" to practice their knowledge	thod course	
Total: 180 h 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 60 h lecture and exercise course (attendance)			
Conditions: participation in the course Materials Ch	emistry	Credit Requirements: one written examination, 90 min	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
Part of the Module: Porous Functional Materials Mode of Instruction: lecture Language: English Contact Hours: 4			
Contents: see module description			
 Literature: Paul A. Wright, Microporous Framework Solids (RSC Materials Monographs, 2008) selected reviews and journal articles cited on the slides 			
Assigned Courses:			
Porous Functional Materials (lecture)			

Examination

Porous Functional Materials

Module PHM-0167: Oxidation and	d Corrosion	ECTS Credits: 6
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Ferdinand Haider		
Contents: Introduction		
Review of thermodynamics		
Chemical equilibria		
Electrochemistry		
Electrode kinetics		
High temperature oxidation		
Localized corrosion		
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 		
Water and seawater corrosion		
Corrosion monitoring		
Corrosion properties of specific materials		
Specific corrosion problems in certain branches		
Oil and Gas industryAutomobile industryFood industry		
Corrosion protection		
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 		
Learning Outcomes / Competences: The students:		
know the the fundamental basics, mechanics, and types of corrosion processes,obtain specific knowledge of one type of corrosion.		
Workload: Total: 168 h 100 h studying of course content using provided materials (self-study) 68 h lecture and exercise course (attendance)		
Conditions: Recommended: good knowledge in ma physical chemistry	terials science, basic knowledge in	Credit Requirements: practical course, written report
Frequency:	Recommended Semester:	Minimal Duration of the Module:

Module PHM-0167

each winter semester	from 3.	1 semester[s]	
Contact Hours:	Repeat Exams Permitted:		
5	according to the examination		
	regulations of the study program		
Parts of the Module			
1. Part of the Module: Oxidation an	d Corrosion		
Mode of Instruction: lecture			
Language: English			
Contact Hours: 4			
Literature:			
Schütze: Corrosion and Environmental Degradation			
Assigned Courses:			
Oxidation and Corrosion (lecture)			
2. Part of the Module: Oxidation an	d Corrosion (Tutorial)		
Mode of Instruction: exercise course	e		
Language: English	Language: English		
Contact Hours: 1			
Assigned Courses:			
Oxidation and Corrosion (Tutorial)	(exercise course)		

Examination

Oxidation and Corrosion

Module PHM-0198: Special Topics in Materials Science (Foreign Institution)		ECTS Credits: 20
Version 1.0.0 Person responsible for module: Pr	of. Dr. Ferdinand Haider	
Conditions: studies at an international partner	institution	Credit Requirements: written exam, oral exam, report, etc.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: semester[s]
	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		

Part of the Module: Special Topics in Materials Science (Foreign Institution) Language: English

Examination

Special Topics in Materials Science (Foreign Institution)

module exam, written exam, oral exam, report, etc.

Module PHM-0164: Characterizat	ion of Composite Materials	ECTS Credits: 6	
Version 1.0.0 (since SoSe15)			
Person responsible for module: Markus	Sause		
Contents:			
The following topics are presented:			
 Introduction to composite materia 	Introduction to composite materials		
 Applications of composite materia 	als		
Mechanical testing			
Thermophysical testing			
Nondestructive testing			
Learning Outcomes / Competences:			
The students:			
 acquire knowledge in the field of 	materials testing and evaluation of comp	oosite materials.	
 are introduced to important conce 	epts in measurement techniques, and ma	aterial models applied to composites.	
 are able to independently acquire 	e further information of the scientific topic	c using various forms of information.	
Workload:			
Total: 180 h	Total: 180 h		
60 h lecture and exercise course (attendance)			
80 h studying of course content through	n exercises / case studies (self-study)		
20 h studying of course content using p	provided materials (self-study)		
20 h studying of course content using li	iterarture (self-study)		
Conditions:			
Recommended: basic knowledge in ma	aterials science, particularly in		
composite materials			
Frequency:	Recommended Semester:	Minimal Duration of the Module:	
each summer semester	from 2.	1 semester[s]	
Contact Hours:	Repeat Exams Permitted:		
4	according to the examination		
	regulations of the study program		

Parts of the Module

1. Part of the Module: Characterization of Composite Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- · Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

2. Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Characterization of Composite Materials

Module PHM-0163: Fiber Reinfo Materials Properties	rced Composites: Processing and	ECTS Credits: 6	
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Siegfried Horn			
Contents: The following topics are treated:			
 production of fibers (e.g. glass, carbon, or ceramic fibers) Physical and chemical properties of fibers and their precursor materials Physical and chemical properties of commonly used polymeric and ceramic matrix materials Semi-finished products Composite production technologies Application of fiber reinforced materials 			
Learning Outcomes / Competences The students:	:		
 know the application areas of composite materials. know the basics of production technologies of fibers, polymeric, and ceramic matrices and fiber reinforced materials. are introduced to physical and chemical properties of fibers, matrices, and fiber reinforced materials. are able to independently acquire further knowledge of the scientific topic using various forms of information. 			
Remarks: ELECTIVE COMPULSORY MODULE			
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study)			
Conditions: Recommended: basic knowledge in materials science, basic lectures in organic chemistry			
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
1. Part of the Module: Fiber Reinfor	ced Composites: Processing and Mate	erials Properties	

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- · Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (lecture)

2. Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (Tutorial) (exercise course)

Examination

Fiber Reinforced Composites: Processing and Materials Properties

Module PHM-0165: Introduction	to Mechanical Engineering	ECTS Credits: 6	
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Siegfried Horn Dr Ing. Johannes Schilp			
Contents:			
The following topics are treated:			
 Statics and dynamics of objects 			
Transmissions and mechanisms			
 Tension, shear and bending mor 	nent		
Hydrostatics			
Hydrodynamics Strongth of motorials and callid m	achanica		
Strength of materials and solid fr	nt		
Mechanical design (including kin	ematics and dynamics)		
	· · · · · · · · · · · · · · · · · · ·		
Learning Outcomes / Competences:	to apply basic concepts of physics and	materials science to:	
Engineering applications			
Instrumentation			
Mechanical design	Instrumentation Mechanical design		
Total: 180 h			
	1		
Frequency:	Recommended Semester:	Minimal Duration of the Module:	
each summer semester		1 semester[s]	
Contact Hours:	Repeat Exams Permitted:		
4	according to the examination		
	regulations of the study program		
Parts of the Module			
1 Part of the Module: Mechanical Fu	agineering		

Mode of Instruction: lecture

Language: English

Contact Hours: 3

2. Part of the Module: Mechanical Engineering (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Introduction to Mechanical Engineering

Module MRM-0052: Functional	Polymers	ECTS Credits: 6
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof.	Dr. Klaus Ruhland	
Contents:		
 Introduction to polymer science 	9	
 Elastomers and elastoplastic m 	naterials	
 Memory-shape polymers 		
 Piezoelectric polymers 		
 Electrically conducting polymer 	-S	
 Ion-conducting polymers 		
 Magnetic polymers 		
 Photoresponsive polymers 		
 Polymers with second order no 	on-linear optical properties	
 Polymeric catalysts 		
 Self-healing polymers 		
 Polymers in bio sciences> 		
The students learn how polymeric ma mechanical, magnetic, electric, optica Workload: Total: 180 h 60 h lecture and exercise course (att 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throu	aterials can be designed and applied to ac al, thermal or chemical impact. endance) g provided materials (self-study) g literarture (self-study) ugh exercises / case studies (self-study)	t in a smart manner on an external
Conditions:		
Recommended: Attendance to PHM-	0035 (Chemie I), PHM-0036 (Chemie II)	
and MRM-0050 (Grundlagen der Pol	ymerchemie und -physik)	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
1. Part of the Module: Functional Polymers		
Mode of Instruction: lecture	-	

Language: English

Contact Hours: 3

2. Part of the Module: Functional Polymers (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Functional Polymers

Module PHM-0122: Non-Destruct	ive Testing	ECTS Credits: 6
Version 1.0.0 (since WS14/15)		<u> </u>
Person responsible for module: Markus Sause		
Contents:		-
 Introduction to nondestructive test 	sting methods	
 Visual inspection 		
 Ultrasonic testing 		
 Guided wave testing 		
Acoustic emission analysis		
Thermography		
Radiography		
Eddy current testing Specialized pendestructive meth	odo	
• Specialized hondestructive meth		
Learning Outcomes / Competences: The students		
 acquire knowledge in the field of 	nondestructive evaluation of materials,	
are introduced to important conc	epts in nondestructive measurement tecl	hniques,
 are able to independently acquire 	e further knowledge of the scientific topic	using various forms of information.
 Integrated acquirement of soft sk 	ills	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atter	idance)	
20 h studying of course content using p	provided materials (self-study)	
20 h studying of course content using I	iterarture (self-study)	
80 h studying of course content throug	h exercises / case studies (self-study)	
Conditions:		
Basic knowledge on materials science,	in particular composite materials	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
1. Part of the Module: Non-Destructive Testing		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- · Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Non-Destructive Testing (lecture)

2. Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Non-Destructive Testing (Tutorial) (exercise course)

Examination

Non-Destructive Testing

Module PHM-0168: Modern Metal	lic Materials	ECTS Credits: 6	
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	r. Ferdinand Haider		
Contents: Introduction			
Review of physical metallurgy			
Steels:			
 principles common alloying elements martensitic transformations dual phase steels TRIP and TWIP steels maraging steel electrical steel production and processing 			
Aluminium alloys:			
 2xxx 6xxx 7xxx Processing – creep forming, hydr 	oforming, spinforming		
Magnesium cast alloys			
mermetallics, righ entropy alloys			
Jopper, prass, pronzes			
Metallic glasses			
Alloy design			
 Learning Outcomes / Competences: Students learn about all kinds of actual metoasic concepts 	tallic alloys, their properties and how the	ese properties can be derived from	
Total: 180 h 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance)			
Conditions:			
		Minimal Duration of the Modules	
rrequency: each summer semester	from 2.	1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		

Parts of the Module

Part of the Module: Modern Metallic Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Cahn-Haasen-Kramer: Materials Science and Technology

Original literature

Examination

Modern Metallic Materials

Module PHM-0184: Sustainable	Resource Management	ECTS Credits: 6
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Armin Reller		
 Learning Outcomes / Competence The students know the basics of energy sources and metals. Furthermore, the students know resource price risks. For this pup protection are being presented dealing with resources. Moreover, the students know h contribute to environmental risk projects). 	s: of geographic distribution and the techni w risk management methods, which are urpose, resource scarcity indicators, risk , which enable the students to make ecc now resource-based strategies with the h k management. All topics are being illus	cal relevancy of different resources like used to identify, measure and manage measures and instruments for risk phomically well-grounded decisions in help of environmental management trated with examples (from practical
Remarks: Elective Module		
Workload: Total: 180 h 140 h studying of course content usir 40 h seminar (attendance)	ng provided materials (self-study)	
Conditions: none		Credit Requirements: 1 written report on selected questions of sustainable resource management (number of pages: approx. 15 - 20; editing time 2 weeks), oral presentation (30 minutes), compulsatory attandance (40 hours)
Frequency: irregular (usu. summer semester)	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
1. Part of the Module: Sustainable	Resource Management	

Mode of Instruction: seminar

Lecturers: Prof. Dr. Armin Reller

Language: English

Frequency: each summer semester

Contact Hours: 2

ECTS Credits: 4

Contents:

- 1. Introduction (global resource consumption)
- 2. Overview of resource types
- 3. Definition of mineral resources
- 4. Introduction to resource management
- 5. Identification of resource price risks
- 6. Measurement of resource price risks
- 7. Management of resource price risks
- 8. Introduction in basics of environmental management
- 9. Corporate environmental management
- 10. Economical closed-loop systems

Literature:

- Holger Rogall: Nachhaltige Ökonomie, Metropolis, Marburg, 2009.
- Hans-Dieter Haas, Dieter Matthew Schlesinger: Umweltökonomie und Res-sourcenmanagement, Wissenschaftliche Buchgesellschaft, Darmstadt, 2007.
- Colin W. Clark: Mathematical Bioeconomics, Wiley, New York, 1976.
- Werner Gocht: Handbuch der Metallmärkte, 2. Aufl., Springer, New York / Tokyo, 1985.

2. Part of the Module: Sustainable Resource Management (Tutorial)

Mode of Instruction: exercise course

Lecturers: Prof. Dr. Armin Reller

Language: English

Frequency: each summer semester

Contact Hours: 2

ECTS Credits: 2

Examination

Sustainable Resource Management

seminar

Description:

1 written report (number of pages: approx. 15 - 20; editing time 2 weeks), oral presentation (30 minutes), compulsatory attandance (40 hours)

Module PHM-0050: Electronics f Scientists	or Physicists and Materials	ECTS Credits: 6
Version 1.0.0 (since WS09/10) Person responsible for module: Andrea	as Hörner	,
Contents:		
 Basics in electronic and electrica Quadrupole theory Analog technique, transistor and Boolean algebra and logic Digital electronics and calculatio Microprocessors and Networks Basics in Electronic Implementation of transistors Operational amplifiers Digital electronics 	al engineering opamp circuits n circuits	
 The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working 		
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study)		
Conditions: none		
Frequency: each semester	Recommended Semester: from 3.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Electronics for F Mode of Instruction: lecture Language: English Contact Hours: 4	Physicists and Materials Scientists	
see module description		

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in the lecture)

Assigned Courses:

Electronics for Physicists and Materials Scientists (lecture)

Examination

Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Module PHM-0166: Carbon-based als)	d functional Materials (Carboteri-	ECTS Credits: 6		
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	r. Dirk Volkmer			
Contents: 1. Introduction to carbon allotropes and	porous carbon materials [4]			
2. Physical properties of fullerenes, carbon nanotubes and graphene [4]				
3. Solid state NMR spectroscopy of carbon materials [4]				
4. Metal carbides [4]				
5. Carbon thin films and coatings [4]				
6. Manufacturing and processing technology of carbon fibres [4]				
7. Carbon-fibre reinforced polymer composites [4]				
8. Carbon-fibre reinforced aluminium (Metal Matrix Composites, MMC) [4]				
9. Energy storage in carbon materials [4]				
10. Carbon-based materials for opto-electronics [4]				
11. Quantum transport phenomena relating to carbon materials [4]				
12. a) Manipulating heat flow with carbon-based electronic analogs: phononics in place of electronics [2]				
12. b) Carbon-based spintronics [2]				
13. Fabrication and processing of carbo	on-based nanostructures [4]			
 Learning Outcomes / Competences: The students: know the basics of the chemistry and physics of carbon materials and their applications, acquire knowledge about the structural characterization, physical properties and engineering of functional materials and carbon based devices, learn to work with specialist literature in english. 				
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study)				
Conditions:				
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]		
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program			
Parts of the Module				

Part of the Module: Carbon-based functional Materials (Carboterials)

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

will be announced by the lecturers

Examination

Carbon-based functional Materials (Carboterials)

Module PHM-0198: Special Topics in Materials Science (Foreign Institution)		ECTS Credits: 20
Version 1.0.0 Person responsible for module	e: Prof. Dr. Ferdinand Haider	
Conditions: studies at an international partner institution		Credit Requirements: written exam, oral exam, report, etc.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: semester[s]
	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		

Part of the Module: Special Topics in Materials Science (Foreign Institution) Language: English

Examination

Special Topics in Materials Science (Foreign Institution)

module exam, written exam, oral exam, report, etc.

Module PHM-0169: Masterthe	sis	ECTS Credits: 26	
Version 1.0.0 (since SoSe15) Person responsible for module: Pro	of. Dr. Dirk Volkmer		
Contents: According to chosen topic			
Remarks: COMPULSORY MODULE			
Workload: Total: 780 h 260 h studying of course content u 520 h lecture and exercise course	sing provided materials (self-study) (attendance)		
Conditions: To begin with the Masterthesis students must have acquired 72 CP from modules consisting of the modulgroups 1a - 5.		Credit Requirements: written thesis	
Recommended: according to the re	espective advisor		
Frequency: each semester	Recommended Semester: from 4.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
Part of the Module: Masterthesis Language: English			
Learning Outcome: see description of module			
Contents: see description of module			
Examination Masterthesis			

Master's thesis

Module PHM-0170: Colloquium		ECTS Credits: 4
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Dirk Volkmer	
Contents: According to the respective Masterthe	sis	
Remarks: COMPULSORY MODULE		
Workload: Total: 120 h 80 h lecture and exercise course (atte 40 h studying of course content using	ndance) provided materials (self-study)	
Conditions: submission of the masterthesis		
Frequency: each semester	Recommended Semester: from 4.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Colloquium Language: English		
Learning Outcome: see description of module		
Contents: see description of module		

Examination

Colloquium

seminar / length of examination: 20 minutes, not graded